战略伙伴

首页 » 常识 » 预防 » 人工智能十年发展总结,中国进步神速,第三
TUhjnbcbe - 2021/4/24 18:48:00

导读

人工智能在过去十年中从实验室走向产业化生产,重塑传统行业模式、引领未来的价值已经凸显,并为全球经济和社会活动做出了不容忽视的贡献。当前,人工智能已经迎来其发展史上的第三次浪潮。人工智能理论和技术取得了飞速发展,在语音识别、文本识别、视频识别等感知领域取得了突破,达到或超过人类水准,成为引领新一轮科技革命和产业变革的战略性技术。人工智能的应用领域也快速向多方向发展,出现在与人们日常生活息息相关的越来越多的场景中。近日,清华大学科技情报大数据挖掘与服务系统平台AMiner发布了研究报告《人工智能发展报告-》,阐述人工智能过去十年取得的重要成果,并讨论了人工智能的未来发展蓝图,理论、技术和应用方面的重大变化与挑战。敬请阅读。

01.飞速发展的十年1、论文发表情况人工智能过去十年发展快速,从学术研究走向商业化。本报告专注于通过分析在国际顶级期刊和会议上的人工智能领域科研论文发表情况来研究该领域的成果产出。由下图可见,从年以来人工智能领域高水平论文发表量整体上呈现稳步增长态势,取得了很多科研成果。这些科研成果涵盖R-CNN算法、神经机器翻译的新方法等。▲过去十年人工智能领域国际顶级期刊会议论文数量趋势从高水平科研论文的国家分布来看,人工智能领域论文发表量居于前十的国家依次是美国、中国、德国、英国、日本、加拿大、法国、韩国、意大利和澳大利亚,如下图所示。美国和中国的高水平论文发表量明显高于其他国家,分别位居第一、二名,中国的论文量紧随美国之后。▲过去十年人工智能领域高水平论文发表量前十国家研究发现,各个国家的人工智能领域高水平科研论文发布具有以下特征。(1)开展跨国科研合作较多的国家是美国和中国从论文的国际合作网络看,美国和中国的AI高水平论文发表均存在较多的跨国合作现象,如下图所示。其中,AI技术实力领先的美国所参与的高水平论文跨国合作最多,是各国的主要合作国家,过去十年,美国的篇AI高水平论文之中,出现过中国、英国、加拿大、德国、印度等30多个合作国家,合作国家数量最多;中国的跨国科研合作国家数量位居第二,在其篇AI高水平论文之中,出现了美国、加拿大、新加坡、英国、日本等20多个合作国家;英国和德国的AI高水平论文跨国合作国家数量均为18个。其余国家在AI高水平论文方面开展的跨国合作数量较少。▲过去十年人工智能领域高水平论文发表国际合作国家分布(2)中美两国是对方AI领域的重要科研合作伙伴在AI高水平论文发表方面,美国和中国均是对方的重要科研合作伙伴。过去十年,美国在其30多个合作国家之中,与中国合作的AI高水平论文数量占比最多,为18.53%。同时,中国在其20多个合作国家之中,与美国合作的论文数量最多,占比27.16%。可见,开展国际科研合作已成为中美两国AI研究成果产出的重要方式。(3)跨国科研合作可以提高合作本国AI研究成果的影响力分析发现,美国的AI领域高水平论文平均引用率为44.99,中国的AI领域高水平论文平均引用率为31.88。相比而言,中国和美国合作论文的平均引用率达51.2,其影响力明显高于中国和美国各自论文的平均引用水平,这表明跨国合作的科研成果在世界人工智能研发领域的展示和交流几率大大增加。2、获得图灵奖的人工智能技术图灵奖(ACMA.M.TuringAward)是计算机界最负盛名、最崇高的一个奖项,有“计算机界的诺贝尔奖”之称。图灵奖是计算机协会(ACM)于年设立的奖项,专门奖励对计算机事业做出重要贡献的个人。其名称取自世界计算机科学的先驱、英国科学家、曼彻斯特大学教授艾伦·图灵(A.M.Turing)。图灵奖获奖者必须是在计算机领域具有持久而重大的先进性的技术贡献,大多数获奖者是计算机科学家。第一位图灵得主是卡耐基梅隆大学的AlanPerlis(年),第一位女性获奖者是IBM的FrancesE.Allen(年)。通过AMiner智能引擎,可以自动收集历年来图灵奖获得者及其学者画像信息(基本信息、研究兴趣等),以及该学者的论文和专著等信息。由于每年度的图灵获奖者一般在次年3月下旬由美国计算机协会(ACM)官方颁发,因此本报告统计了截至年颁发的近十年(-年)图灵奖得主数据。分析发现,图灵奖近十年授予领域具有如下特征。(1)十年中三次正式颁奖给人工智能领域图灵奖颁发的领域,在一定程度上反映了计算机科学技术发展方向的缩影。数据显示,过去十年图灵奖分别授予给了计算理论、概率和因果推理、密码学、分布式和并发系统、数据库系统、万维网、计算机系统、深度神经网络和3D计算机图形学九个领域,具体如下图所示。从获奖内容、创新角度、研究领域等维度来看,图灵奖注重原始理论创新和学科交叉,具有科研优势积累现象。过去十年的图灵奖有三次正式授予给人工智能领域。第一次是年,LeslieValiant因对计算理论的贡献(PAC、枚举复杂性、代数计算和并行分布式计算)获得图灵奖,该成果是人工智能领域快速发展的数学基础之一。第二次是年,因JudeaPearl通过概率和因果推理对人工智能做出贡献而颁奖;第三次是年,深度学习领域三位大神YoshuaBengio、GeoffreyHinton和YannLeCun因为在概念和工程上的重大突破推动了深度神经网络成为计算机领域关键技术而荣获图灵奖。Hinton的反向传播(BP)算法、LeCun对卷积神经网络(CNN)的推动以及Bengio对循环神经网络(RNN)的贡献是目前图像识别、语音识别、自然语言处理等获得跳跃式发展的基础。中国科学院张钹院士在《迈向第三代人工智能》一文中也提到这5位图灵奖得主在创建第二次AI中所做出的重大贡献。▲-年图灵奖授予的计算机领域(2)人工智能领域获奖人数占据四分之一由下图可见,过去十年,共有16位学者获得图灵奖。其中,包括5位人工智能领域学者获此殊荣,占比31%,这反映出人工智能在计算机学科中的地位已不容忽视。同时,人工智能领域图灵奖从初期的单独获奖者到近年来的共同获奖者,越来越呈现出高层次学者强强联合的研究趋势。(3)美国培养并拥有八成以上的图灵奖得主过去十年的16位图灵奖获得者之中,有13位来自美国、2位来自英国、1位来自加拿大,如下图所示。在美国的13位图灵奖得主之中,有10位是在美国本国接受的全部高等教育、2位拥有美国和其他国家教育背景、仅1位没有美国教育背景。其中,年获奖者JudeaPearl拥有以色列本科教育和美国纽约大学博士教育背景;年图灵奖得主SilvioMicali拥有意大利本科教育和美国加州伯克利大学博士教育背景。唯一没有美国教育背景的是年图灵奖得主YannLeCun,他仅有法国教育背景。八成以上图灵奖得主具有美国教育或工作背景的事实,反映出美国人工智能高层次人才培养的强势竞争力。▲-年图灵奖得主所在国家及教育背景情况(4)欧洲培养的高层次人才中有三位被吸引到美国学习或工作并获图灵奖从这些图灵获奖者的教育背景来看,美国与欧洲国家的学术交流非常多。YannLeCun拥有法国教育背景后到美国任职并获图灵奖;JudeaPearl和SilvioMicali分别从以色列和意大利被吸引到美国继续深造而拥有跨国双重教育背景,后来均到美国任职并在美国获得图灵奖。此外,英国的这两位图灵奖得主虽然均是在本国接受的高等教育并且获奖时都在本国,但都有过一些美国任职经历。GeoffreyHinton博士毕业于英国爱丁堡大学,后来陆续在谷歌、卡内基梅隆大学、加州大学圣地亚哥分校等美国机构任职;TimBerners-Lee在英国牛津大学本科毕业后,也有过在麻省理工学院任职的经历。可见,美国的高等教育体系不仅培养的了自己本国的AI领域高端人才,而且从欧洲国家吸引和留住了多位领域精英。(5)仅加拿大图灵奖得主没有任何美国教育和任职经历在这16位图灵奖获得者之中,仅有加拿大的YoshuaBengio在本国的麦吉尔大学接受了高等教育并在本国蒙特利尔大学任职,并于年因在深度神经网络概念和工程上的突破而获奖。这在一定程度上反映出加拿大在人工智能领域高层次人才培养和质量上较为成功。(6)图灵得主们在领域相关论文发表后需要平均等待37.1年之后才获奖通过AMiner人才画像数据获取这些图灵奖得主所发表的第一篇与获奖理由相关主题的论文,计算得出该论文发表年份距离作者获得图灵奖时间,从而得到这些图灵得主的获奖时间长短,如下图所示。结果发现,图灵奖得主获奖时一般距离其首次发表获奖领域相关论文至少已经三十年以上,平均为37.1年。其中,EdwinCatmull于年获得图灵奖,距离其在计算机图形学领域发表的最早论文Asystemfor
1
查看完整版本: 人工智能十年发展总结,中国进步神速,第三